
3 
Model Implementation 

 
 

Most of the literature suggests that a “specific-to-general” strategy is 

strongly recommended for building non-linear time series models, see Granger 

(1993), for instance. Therefore, one should start with a simple model and then, 

after evaluation, if the model is not adequate, it should proceed to more 

complicated ones. 

This thesis will follow the steps proposed by Terasvirta (1994) which 

consist of:  

 

(i) Specify a linear autoregressive model of order p using a model 

selection criterion as AIC (Akaike, 1974) or SBIC (Schwarz, 1978). 

(ii) Select the lags where the periodicity will be counted for using the auto-

correlation function. 

(iii) Test the null hypothesis of linearity against the model, in this case, 

STPAR nonlinearity. If linearity is rejected, select the appropriate 

transition variable ts ; 

(iv) Estimate the parameters in the selected STPAR model and select the 

correct number of h using a selection criterion; 

(v) Evaluate the model; 

(vi) Finally, obtain the forecasts or use the model for descriptive purposes. 

 

3.1 
Model Specification 
 

As said before, one should estimate an auto regression and select the best 

model according to a model selection criterion. It should be accompanied by an 

analysis of a proper test for residual autocorrelation, like the portmanteau test of 

Ljung and Box (1978); in the case of (5) it is also important to analyze the 

significance of the periodicity involved in the model. In doing so, it is 

recommended to analyze the estimated autocorrelations for the periodicity. 
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3.2 
Linearity Test 
 

Testing linearity is important for two reasons. Firstly, due to the fact that 

one should use the nonlinear model only if linearity is rejected under the null 

hypothesis, otherwise a linear model would be suitable to model the underlying 

time series. Secondly, to select the transition variable ts . The variable is chosen by 

running the linearity test, and selecting the lag of the variable that minimizes the 

p-value of the test (Terasvirta, 1994). 

The procedure proposed here is based on a Lagrange Multiplier (LM) test, 

where auxiliary regressions are estimated to compute the test statistic. It follows 

the same steps as Terasvirta (1994), but it counts for non linear periodic auto 

regressive model. Other papers that are extremely important for the understanding 

of this linearity test are Luukkonen (1990), Tsay (1986), Luukkonen et al (1988) 

and Saikkonen and Luukkonen (1988). 

In order to derive a linearity test against (5), one should approximate the 

logistic function 1)})(exp{1())(( −−−+=− cscsF tt γγ  with a first order Taylor 

expansion around γ  = 0. The reason for this is simply that a possible null 

hypothesis for the linearity test would be 0:0 =γH . However, (5) under the null 

is not identifiable. 

Consider that the transition function is 

2
1)})(exp{1())(( 1 −−−+=− −cscsF tt γγ . The sum of ½ it is helpful to derive the 

test and it doesn’t affect the argument. So, after the expansion the result would be 

 

0
1

),;(*),0;(*),;(
=∂

∂
+≈

γγ
γγγ csFcsFcsT t

tt                                                        (7) 

  

where  it was used the fact that 0),0;(* =csF t . After substituting T1(.) for F1
*(.) 

in (5) and rearranging terms this gives the auxiliary regression model 

 

tttstst swwy ηββ ++= '
1

'
0                                                          (8) 
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where )',...,( ,1,0, pjsjsjsjs ββββ = , j = 0,1 and tη  = ),;(1
'
2 csRw ttst γφε + , with 

),;(1 csR t γ  the remainder of the Taylor expansion and also tt εη =  under H0. Note 

that s here means only that the parameters follow a Fourier form like in (5). The 

use of (8) instead of (5) solves the identification problem, and one obtains a 

simple linearity test. It is easy to see that the parameters jsβ , in the auxiliary 

regression (8) are functions of the parameters in the STPAR model (5) and the 

hypothesis 0=γ implies now testing that 01 =siβ  for i = 0,…,p. The test statistic 

has an asymptotic 2χ distribution with p+1+2h degrees of freedom under the null 

hypothesis of linearity. 

The reader should be aware that when dtt ys −=  for certain 

integer pd ≤≤1 , ts s0,1β  should be removed from the regression (8) to avoid 

perfect multicollinearity. As pointed out by Luukkonen et al. (1988), if only the 

intercepts differ from one regime to the other and other parameters are the same, 

the test has no power and to remedy this situation, a third order Taylor expansion 

of the transition function should be carried out. In this case, the expansion results 

in 

 

33

0
3

3

0
3 )(

48
1)(

4
1),,(*

6
1),;(*),;( cscscsFcsFcsT tt

tt
t −+−=

∂
∂

+
∂

∂
≈

==

γγ
γ
γγ

γ
γγγ

γγ

     (8) 

 

Where it was used the fact that the second derivative of ),;(* csF t γ with 

respect to γ  evaluated at 0=γ  equals zero. Using this approximation yields the 

auxiliary model 

 

tttsttsttstst swswswwy ηββββ ++++= 3'
3

2'
2

'
1

'
0                                                (9) 

 

where  tη  = ),;(3
'
2 csRw ttst γφε + , and the null hypothesis is now defined as 

0=isjβ  for i = 1,…,p, and j = 1, 2, 3. Again, note that tt εη =  when the null 

hypothesis is true. It has an asymptotic 2χ  distribution with 3(p+1+2h) degrees of 

freedom. In small or medium size samples 2χ  distribution has a poor 

approximation to the actual small sample distribution and to circumvent that 
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problem Granger and Terasvirta (1993 – ch.7) suggest the use of an F distribution. 

The regression can become very large and Luukkonen et al. (1988) suggest that 

the regression (9) should be augmented only by the terms that depend on the 

intercept 0,1φ  and 0,2φ , which are 0,20,1 , ss ββ  and 0,3sβ creating then a more 

parsimonious or “economic” version of the test. Hence, the final regression is 

 

ttststtstst ssswwy ηββββ ++++= 3
0,3

2
0,2

'
1

'
0                                              (10) 

 

Now, it has a 2χ  distribution with p+3+2h degrees of freedom. 

The test can be carried out like this: 

 

1) Regress ty  on tw  with the Fourier terms and compute ∑ =
=

T

t tSSR
1

2
1 ε̂ ; 

2) Regress tε̂ on tw  and on the others nonlinear regressors of (9) for the full 

version or (10) for the “economic” version and compute the residual sum 

of squares ∑ =
=

T

t tSSR
1

2
2 η̂ ; 

3) Calculate a 2χ  statistic as
1

21
2

SSR
SSRSSR

TLM
−

=
χ

. 

Or the F version of the test which is: 

 

)644(
)21(3

2

21

hpTSSR
hpSSRSSRLM F −−−

++−
=  

 

where T is the number of observations. 

 

3.3 
Estimation 
 

Once the variables and the transition variable have been selected, the next 

stage in the modeling cycle involves estimation of the parameters in the STPAR 

model. 
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The parameters in (5) can be estimated by conditional maximum 

likelihood or non linear least squares. When ),0(~ 2σε NIDt  the methods are 

coincident. Then, the vector of parameters ψ  can be estimated as 

 

∑
=

−==
T

t
tttT swGyQ

1

2));,((minarg)(minargˆ ψψψ
ψψ

                                (11) 

 

It is easy to see that the difference between (5) and (1) is just that tw  is 

“bigger” in the former. It incorporates the Fourier forms into the matrix as other 

variables. Under certain regularity conditions, which are discussed in Wooldrige 

(1994) and Potscher and Prucha (1997), among others, the NLS estimates are 

consistent and asymptotically normal, i. e. 

 

),,0()ˆ( 0 CNT →−ψψ                                                                     (12) 

 

where 0ψ  denotes the true parameters value. The asymptotic covariance matrix C 

of the estimators can be estimated consistently. For further details see Dijk et al. 

(2002). 

In order to reduce the dimensionality of the NLS estimation problem, as 

suggested by Leybourne, Newbold and Vougas (1998) and Medeiros and Veiga 

(2005), the concentrated least squares were used. When the parameters γ  and c 

are known the STPAR reduces to a linear model. Therefore, one can compute the 

parameters ,',',' sss κλϖ  conditional on γ  and c by Ordinary Least Squares 

(OLS). 

Another important issue in this type of model is the selection of starting 

values for the optimization routine. It has proven to be very sensitive to those 

values. In this thesis it was based in the idea of van Dijk et al. (2002), which is a 

two dimensional grid search over γ  and c. Replacing the transition function (2) 

by 

 

,)})(ˆexp{1())(( 1−−−+=− cscsF tst t
σγγ                                              (13) 
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Where 
tsσ̂  is the sample standard deviation of ts , makes γ  approximately 

normalized. Then, a set of grid values for c was defined as sample percentiles of 

the transition variable. 

Finally, some comments about the estimation of the slope parameter γ  are 

necessary. As pointed out by many other authors, it is rather difficult to obtain 

precise estimates of this parameter. One needs a large amount of data around c to 

have an accurate estimate ofγ . This is due to the fact that when the value of γ  is 

large, even large changes in this parameter will generate only small effects in the 

transition function which will be close to a step function. Therefore, the reader 

should not take into account the insignificance of the parameter if judged by its t-

statistic against the hypothesis of non linearity. 

However, in this thesis, the analysis with real data (NSW electricity 

demand) will use a long time series with more than fifty thousands observations. 

This should be taken into account for small and medium size samples. 

 

3.4 
Model Evaluation 
 

After estimating the parameters one needs some tools to evaluate the 

model in order to verify if it was correctly specified. The tests proposed here are 

Lagrange Multiplier (LM) tests for the hypothesis of no error autocorrelation and 

LM-type test for the hypothesis of no remaining nonlinearity. These tests were 

implemented based on the work of Eitrheim and Terasvirta (1996) and Medeiros 

and Veiga (2003). They are constructed in the same manner as the linearity test 

described previously that is, using Taylor expansions to linearize the problem and 

then constructing auxiliary regressions to compute the statistic of the test. 

 

3.4.1 
Test of Serial Independence 
 

Consider the following nonlinear model of order p with autocorrelated 

errors: 
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tttt swGy εψ += );,(                                                                                 (14) 

),0(~' 2

1
σµµεθµυθε iidL ttt

q

j

j
jttt +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+= ∑

=
                                 (15) 

 

Where L is lag operator, wt = (1, yt-1, …, yt-p)’, )',...,( 1 rψψψ = , 

)',...,( 1 qttt −−= εευ , and )',...,( 1 qθθθ = , 0≠qθ . We need to assume that the roots 

of the polynomial in the error equation lies inside the unit circle, i.e. tε  is 

stationary, and furthermore, that under the assumption of tε  following an 

identically and independent distribution with mean 0 and variance 2σ , implying 

that 0=θ , the process yt is stationary and ergodic such that the parameters of (14) 

can be consistently estimated by nonlinear least squares. So the hypothesis of 

serial independence of errors tε  in (14) would be H0 : 0=θ . 

Assuming the necessary starting values fixed, the conditional normal log-

likelihood function for observation t (t = 1, …, T) takes the form 

 
2
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(16) 

 

As pointed out in Eitrheim and Terasvirta (1996), the information matrix is 

block diagonal such that the second partial derivative with respect to 2σ  forms its 

own block. Considering 2σ  fixed in (14) to derive the test statistic, the first 

partial derivatives of the normal log-likelihood with respect to ψθ and  are 
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                     (17) 

 

Under H0, the consistent estimators of (16) are 
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Where ,)'ˆ,...,ˆ(ˆ 1 qttt −−= εευ  ),ˆ;,(ˆ ψε jtjtjtjt swGy −−−− −=  j = 1,…,q, 

ψψ ∂∂= )ˆ,,(ˆ ttt swGz  and ∑ =
=

T

t tT
1

22 ˆ1ˆ εσ . Finally, the LM statistic can be 

written as 
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2 'ˆˆ'ˆˆ'ˆˆ'ˆˆ'ˆˆ'ˆˆ ευυυυυυεσ                  (18) 

 

Under the conditions that the moments implied by (17) exist, LM has an 

asymptotic )(2 qχ  distribution. 

The STPAR model in (5) can be written like (14), therefore, the 

components of tẑ  in the case when the transition function is a logistic function are 

as follows: 

 

twG
=

∂
∂

1

ˆ

φ
                                                                                            (19) 

tttt FwcsFwG ˆ)ˆ,ˆ;(
ˆ
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==
∂
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φ

                                                                    (20) 

tttt wcscscstgG '
2

2 ˆ)ˆ)}(ˆ(ˆexp{)})ˆ(ˆexp{1()(ˆ
ˆ

φγγ
γ γ −−−−−+==
∂
∂ −          (21) 

tttc wcscstg
c
G '

2
2 ˆ)}ˆ(ˆexp{)})ˆ(ˆexp{1(ˆ)(ˆ

ˆ
φγγγ −−−−+==

∂
∂ −          (22) 

 

For more details about the test, see Eitrheim and Terasvirta (1996). Hence, 

the test can be performed in four stages as follows: 

 

1) Estimate the STPAR under the assumption of uncorrelated errors and 

compute the residual tε̂ . 
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2) Regress tε̂  on tw , tt Fw ˆ , )(ˆ tgγ  and )(ˆ tgc ; Compute the residuals sum of 

squares ∑ =
=

T

t tSSR
1

2
1

~ε . 

3) Regress ε~ on tυ , wt, tt Fw ˆ , )(ˆ tgγ and )(ˆ tgc ; Compute the residuals sum of 

squares SSR2. 

4) Compute the 2χ statistic 

 

1

21
2 SSR

SSRSSRTLM −
=

χ
 

 

Or the F version of the test which is preferable when one is dealing with a 

small or moderate sample. 

 

qnT
SSR

q
SSRSSR

LM F

−−

−

=
2

21

 

 

Where T is the number of observations and n is the dimension of the 

gradient vector tẑ . It is worth mentioning that step 2 is done just to make sure that 

errors are ortogonalized in relation to the regression. 

 

3.4.2 
Test of no remaining nonlinearity 
 

As pointed out in Eitrheim and Terasvirta (1996) a non-linear model can 

be misspecified in a lot of different ways. In this thesis we will concentrate only in 

one specific way to determine whether there is remaining nonlinearity or not.  In 

fact, what we will consider testing is the hypothesis of no additional nonlinear 

structure. For that we shall consider an additive STPAR with three regimes: 

 

ttttttt chFwcsFwwy εγφγφφ +−+−+= ))(())(( 222
'
3111

'
2

'
1                     (23) 
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)))((2cos()))((2sin(
1
∑
=

++=
h

k
ikikpij DsDkDsDk πκπλωφ

 

),0(~ 2σε iidt .  

 

where i = 1, 2, 3 and F2 is the same logistic function as F1 and ht is another 

transition variable or the same with a different lag. What we need to consider is 

that the model has been estimated without the third regime which is the second 

nonlinear component, and the null hypothesis H0: 02 =γ  is tested against (23). 

For that, assuming the same as before, that is, under this null hypothesis the 

parameters 121 ,, γφφ ss  and 1c  can be consistently estimated by NLS. 

Following the same idea as the test showed previously, we need to replace 

F2 in (23) by its third order Taylor series approximation around 02 =γ  because 

under this null hypothesis the model is not identified. This equals T2 = f20 + f21ht + 

f22ht
2 + + f23ht

3, where f2j, j = 0,1,2,3, are functions of 2γ  such that f20 = f21 = f22 = 

f23 = 0 for 2γ  = 0. The result of (23) after some reparameterization is 

 

ttttttttt tt
hwhwhwcsFwwy µβββγφφ ++++−+= 3'

4
2'

3
'
2111

'
2

'
1 ))((    (24) 

 

where ]',...,[ 1 pttt yyw −−= . Under H0 which is equivalent now to testing 

H0: 0432 === βββ , tt εµ =  under H0. The dimension of the null hypothesis is 

different now, increased from p to 3p. In fact one is testing against an additive 

STPAR component. The asymptotic theory behind the test is really similar to that 

one presented for the test with no autocorrelation. The test statistic is the same as 

(18) with tẑ  as before, however, tυ̂  is different. It is now equal to 

),,( 3'2''
tttttt hwhwhw ’. The test can be performed in the same steps as shown before 

in the test of no autocorrelation. The difference is just the new definition of tυ̂  at 

stage 3 and the degrees of freedom in the F test, 3p and T – n – 3p, respectively. 
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3.5 
Forecasting 
 

The forecasting is one of the most important issues in the scope of this 

work. Forecasting with a periodic auto regression is roughly the same as an AR 

model. Therefore, one can actually forecast with the STPAR in the same way as a 

STAR. 

The non-linearity of the models STPAR make the forecast with more than 

one step ahead much more complicated than in the linear models. Considering one 

step ahead forecast one could say that it is the same as an auto regressive model. 

For a complete discussion about forecasting see Lundbergh and Teräsvirta (2000). 

The next discussion will be based in a general procedure to obtain forecasts for 

more than one step ahead forecast. 

Consider the model STPAR in (5). It follows that );()|( 11 ψ++ = ttt wfYyE , 

which is the unbiased forecast of 1+ty  made at time t conditional to all previous 

observations tY  up until that time. In this case, all the relevant information is 

included in )',...,,,1( )1(11 −−−+ = ptttt yyyw ; the notation of the forecast is then f
tty |1+ . 

To forecast for more than one step ahead is not straightforward because to obtain 

)|( 2 tt YyE +  is somehow more difficult. It is then 

 

t
f

tttt
f

tttt
f

tt YwgEYwgEYyEy |);({}|]);({[)|( |22|22|2 ψεψ +++++ =+==          (25) 

 

where )',...,,,,1( )2(11|1|2 −−−+++ += ptttt
f

tt
f

tt yyyyw ε ; The exact expression for (14) 

would be 

 

∫
∞

∞−
+++ Φ== dzzdwgYwgEy f

ttt
f

tt
f

tt )();(}|);({ |2|2|2 ψψ                                             (26) 

 

where )(zΦ  is the cumulative distribution function of 1+tε . Numerical integration 

would be needed to obtain the forecast, and for longer time horizons multiple 

integration is necessary. 
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Computationally, it is more feasible to obtain the forecasts recursively 

without numerical integration. As pointed out in Granger and Teräsvirta (1993) 

another way to do it would by simulating. One could use Monte Carlo, relying on 

the error distribution, or bootstrap, applying resample to obtain the forecast. An 

advantage of these numerical approximations to the true expectations relies on the 

fact that instead of having one point forecast, one has a number of point forecasts 

for each period to be predicted. Hence, what is available is a density forecast, and 

confidence intervals may be constructed on the basis of them. The reader needs to 

remember that in doing so one of these procedures, it doesn’t account for 

sampling uncertainty and, therefore, the intervals are somewhat narrow. 

In this thesis, Monte Carlo simulation was used. For k steps ahead forecast 

horizon it follows that 

 

∑
=

++ =
N

i

f
ikt

f
tikt wgNy

1
,|, );(1 ψ                                                                                (27) 

 

where each of the N values of )1( −+ ktε  in f
iktw ,,+  is drawn independently from a 

normal error distribution of the estimated model, that is with the same mean and 

variance. By the weak law of large numbers, the forecast is asymptotically 

unbiased as ∞→N . 
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