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Model Implementation

Most of the literature suggests that a “specific-to-general” strategy is
strongly recommended for building non-linear time series models, see Granger
(1993), for instance. Therefore, one should start with a simple model and then,
after evaluation, if the model is not adequate, it should proceed to more
complicated ones.

This thesis will follow the steps proposed by Terasvirta (1994) which

consist of:

(1) Specify a linear autoregressive model of order p using a model
selection criterion as AIC (Akaike, 1974) or SBIC (Schwarz, 1978).

(i) Select the lags where the periodicity will be counted for using the auto-
correlation function.

(ili)  Test the null hypothesis of linearity against the model, in this case,
STPAR nonlinearity. If linearity is rejected, select the appropriate

transition variables, ;

(iv)  Estimate the parameters in the selected STPAR model and select the
correct number of h using a selection criterion;
(V) Evaluate the model,;

(vi)  Finally, obtain the forecasts or use the model for descriptive purposes.

3.1
Model Specification

As said before, one should estimate an auto regression and select the best
model according to a model selection criterion. It should be accompanied by an
analysis of a proper test for residual autocorrelation, like the portmanteau test of
Ljung and Box (1978); in the case of (5) it is also important to analyze the
significance of the periodicity involved in the model. In doing so, it is

recommended to analyze the estimated autocorrelations for the periodicity.
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3.2
Linearity Test

Testing linearity is important for two reasons. Firstly, due to the fact that
one should use the nonlinear model only if linearity is rejected under the null
hypothesis, otherwise a linear model would be suitable to model the underlying
time series. Secondly, to select the transition variables, . The variable is chosen by
running the linearity test, and selecting the lag of the variable that minimizes the
p-value of the test (Terasvirta, 1994).

The procedure proposed here is based on a Lagrange Multiplier (LM) test,
where auxiliary regressions are estimated to compute the test statistic. It follows
the same steps as Terasvirta (1994), but it counts for non linear periodic auto
regressive model. Other papers that are extremely important for the understanding
of this linearity test are Luukkonen (1990), Tsay (1986), Luukkonen et al (1988)
and Saikkonen and Luukkonen (1988).

In order to derive a linearity test against (5), one should approximate the
logistic function F(y(s, —c)) = (L+exp{~y(s, —c)}) ™ with a first order Taylor
expansion around y = 0. The reason for this is simply that a possible null

hypothesis for the linearity test would be H,, : y = 0. However, (5) under the null

is not identifiable.

Consider that the transition function is

F(y(s, —c)) = A+exp{—y(s,— )P - % The sum of ¥ it is helpful to derive the

test and it doesn’t affect the argument. So, after the expansion the result would be

Tl(St;]/,C) ~ F*(St;O,C)+]/

OF *(s.;7,C)
Y (7

y=0

where it was used the fact that F *(s,;0,c) = 0. After substituting T1(.) for F1 (.)

in (5) and rearranging terms this gives the auxiliary regression model

Yi = /B(IJsWt +ﬂl‘swtst + 17, (8)
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where B = (Bio: Bisir-Bis,) s 1 = 01 and 5, = &+ WR (s;7,¢), with
R, (s,;7,c) the remainder of the Taylor expansion and also 7, = ¢, under Ho. Note
that s here means only that the parameters follow a Fourier form like in (5). The
use of (8) instead of (5) solves the identification problem, and one obtains a

simple linearity test. It is easy to see that the parameters £, in the auxiliary

s
regression (8) are functions of the parameters in the STPAR model (5) and the
hypothesis y = 0implies now testing that £, =0 for i = 0,...,p. The test statistic
has an asymptotic y°distribution with p+1+2h degrees of freedom under the null
hypothesis of linearity.

The reader should be aware that when s =y, , for certain

integerl<d < p, B,,s should be removed from the regression (8) to avoid

perfect multicollinearity. As pointed out by Luukkonen et al. (1988), if only the
intercepts differ from one regime to the other and other parameters are the same,
the test has no power and to remedy this situation, a third order Taylor expansion
of the transition function should be carried out. In this case, the expansion results

in

OF *(s,:7,C) 1 4 0F*(s,7.C) 1 1, s
T.(s;;7,C) m y— L Tt U = Zy(s —C)+—y(s, —¢C (8)
N AN o Y4 P 47(t ) 487(t )

y=0 7=0

Where it was used the fact that the second derivative of F *(s,;y,c) with
respect to y evaluated at y =0 equals zero. Using this approximation yields the

auxiliary model
! ! ! 2 ! 3
Yo = BosWe + BisWiS; + Bo WSy + Sa WSy + 17, 9)

where 7, = & +¢,W,R,(s,;7,c), and the null hypothesis is now defined as
By =0 fori=1..p andj =1, 2, 3. Again, note that », =¢, when the null
hypothesis is true. It has an asymptotic > distribution with 3(p+1+2h) degrees of

freedom. In small or medium size samples x> distribution has a poor

approximation to the actual small sample distribution and to circumvent that
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problem Granger and Terasvirta (1993 — ch.7) suggest the use of an F distribution.
The regression can become very large and Luukkonen et al. (1988) suggest that
the regression (9) should be augmented only by the terms that depend on the

intercept ¢,, and ¢,,, which are B, B,, and p; ,creating then a more

parsimonious or “economic” version of the test. Hence, the final regression is
! ! 2 3
Yo = BosWe + BisWiS; + Bos oS¢ + Bas oSt +114 (10)

Now, it has a y? distribution with p+3+2h degrees of freedom.

The test can be carried out like this:

T Ao,

1) Regress y, on w, with the Fourier terms and compute SSR, = thlgt ;

2) Regress &,0n w, and on the others nonlinear regressors of (9) for the full

version or (10) for the “economic” version and compute the residual sum

T A2

of squares SSR, =" 7/ ;

SSR, — SSR,

3) Calculate a y? statisticasLM , =T
z SSR,

Or the F version of the test which is:

_ SSR, -SSR, /3(p +1+ 2h)

LM
" SSR,/(T —4p-4-6h)

where T is the number of observations.

3.3
Estimation

Once the variables and the transition variable have been selected, the next
stage in the modeling cycle involves estimation of the parameters in the STPAR

model.
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The parameters in (5) can be estimated by conditional maximum

likelihood or non linear least squares. When ¢, ~ NID(0,5°) the methods are

coincident. Then, the vector of parameters y can be estimated as

v =argminQ; () = argmin }" (y, ~G(w,,5,;))’ (11)

v t=1

It is easy to see that the difference between (5) and (1) is just that w, is
“bigger” in the former. It incorporates the Fourier forms into the matrix as other
variables. Under certain regularity conditions, which are discussed in Wooldrige
(1994) and Potscher and Prucha (1997), among others, the NLS estimates are
consistent and asymptotically normal, i. e.

VT (7 —w,) = N(0,C), (12)

where y, denotes the true parameters value. The asymptotic covariance matrix C
of the estimators can be estimated consistently. For further details see Dijk et al.
(2002).

In order to reduce the dimensionality of the NLS estimation problem, as
suggested by Leybourne, Newbold and Vougas (1998) and Medeiros and Veiga

(2005), the concentrated least squares were used. When the parameters y and c

are known the STPAR reduces to a linear model. Therefore, one can compute the

parameters @'s, A's, «'s, conditional on y and c by Ordinary Least Squares
(OLS).

Another important issue in this type of model is the selection of starting
values for the optimization routine. It has proven to be very sensitive to those
values. In this thesis it was based in the idea of van Dijk et al. (2002), which is a

two dimensional grid search over y and c. Replacing the transition function (2)

by

F(y(s, —¢)) = Q+exp{-y/S, (s, O}, (13)
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Where &st is the sample standard deviation of s,, makes y approximately

normalized. Then, a set of grid values for ¢ was defined as sample percentiles of
the transition variable.

Finally, some comments about the estimation of the slope parameter » are

necessary. As pointed out by many other authors, it is rather difficult to obtain
precise estimates of this parameter. One needs a large amount of data around c to

have an accurate estimate of . This is due to the fact that when the value of y is

large, even large changes in this parameter will generate only small effects in the
transition function which will be close to a step function. Therefore, the reader
should not take into account the insignificance of the parameter if judged by its t-
statistic against the hypothesis of non linearity.

However, in this thesis, the analysis with real data (NSW electricity
demand) will use a long time series with more than fifty thousands observations.
This should be taken into account for small and medium size samples.

3.4

Model Evaluation

After estimating the parameters one needs some tools to evaluate the
model in order to verify if it was correctly specified. The tests proposed here are
Lagrange Multiplier (LM) tests for the hypothesis of no error autocorrelation and
LM-type test for the hypothesis of no remaining nonlinearity. These tests were
implemented based on the work of Eitrheim and Terasvirta (1996) and Medeiros
and Veiga (2003). They are constructed in the same manner as the linearity test
described previously that is, using Taylor expansions to linearize the problem and
then constructing auxiliary regressions to compute the statistic of the test.

3.4.1
Test of Serial Independence

Consider the following nonlinear model of order p with autocorrelated

errors:
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Yi :G(Wt7st;W)+gt (14)
3 i H 2
& =00 +u =0, e+, p ~iid(0,0°) (15)
j=1
Where L is lag operator, wi = (1, Ye1, ..oy Yep)s ¥ =y, ¥,),

U = (& 456 4)y and 0=(6,,...6,)", 6, 0. We need to assume that the roots
of the polynomial in the error equation lies inside the unit circle, i.e. & is
stationary, and furthermore, that under the assumption of ¢, following an

identically and independent distribution with mean 0 and variance %, implying
that & = 0, the process Y is stationary and ergodic such that the parameters of (14)
can be consistently estimated by nonlinear least squares. So the hypothesis of

serial independence of errors &, in (14) would be Hy: 6 =0.

Assuming the necessary starting values fixed, the conditional normal log-
likelihood function for observationt (t=1, ..., T) takes the form

2
1 1 q q
It = C_Elno_z - 262 {yt _Zlej yt—j _G(Wt'st;l//) +ZlejG(Wt—j’St—j ;‘//)}
i= i=
(16)
As pointed out in Eitrheim and Terasvirta (1996), the information matrix is

block diagonal such that the second partial derivative with respect to o forms its

own block. Considering o fixed in (14) to derive the test statistic, the first

partial derivatives of the normal log-likelihood with respectto & and y are

ol u .
‘ =(G—;){yt_,- —G(w_j,s 5w} i=1...q,

0.
‘ (17)

a_h:(“_rj BWsp) |5y COW oY)

oy \o? oy =i oy

Under Ho, the consistent estimators of (16) are
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A

Where O, = (& 4m&q)s € =Y, —CW_;.5_;:w), | = L..0,

7, =0G(w,,s,,)/0y and &% =YT Z::léf. Finally, the LM statistic can be

written as

(18)

t=1

T T T T 17
LM :a‘{Zétﬁt'j{Zﬁtﬁt'—z&tit(Ztht'J T26
t t t

N>

%K_J
M—c
S
0’:)

Under the conditions that the moments implied by (17) exist, LM has an
asymptotic y*(q) distribution.
The STPAR model in (5) can be written like (14), therefore, the

components of Z, in the case when the transition function is a logistic function are

as follows:

oG

8_¢1 =W, (19)
oG a2

%‘th:(st!%c) _Wt Ft (20)
oG . o s A A

o g, () = @+exp{-r(s, —C)}) " exp{=r(s, —C)}(s, —C)g,W, (21)
oG . . o e AP

20 9 (t) = 7L +exp{=y(s, —C)}) " exp{-r(s, —C)}#,W, (22)

For more details about the test, see Eitrheim and Terasvirta (1996). Hence,

the test can be performed in four stages as follows:

1) Estimate the STPAR under the assumption of uncorrelated errors and

compute the residual &,
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2) Regress &, onw,,w, Ift, g,(t) and g, (t); Compute the residuals sum of

squares SSR, = Z;Ef :
3) Regress £on v, , Wi, W, Ift, g,(t)and g, (t); Compute the residuals sum of

squares SSR;.
4) Compute the y?statistic

(M 7 SR =SSR,
z SSR,

Or the F version of the test which is preferable when one is dealing with a

small or moderate sample.

SSR, — SSR,

_ q
LM = SSR,

T-n-q

Where T is the number of observations and n is the dimension of the

gradient vector Z, . It is worth mentioning that step 2 is done just to make sure that

errors are ortogonalized in relation to the regression.

3.4.2

Test of no remaining nonlinearity

As pointed out in Eitrheim and Terasvirta (1996) a non-linear model can
be misspecified in a lot of different ways. In this thesis we will concentrate only in
one specific way to determine whether there is remaining nonlinearity or not. In
fact, what we will consider testing is the hypothesis of no additional nonlinear
structure. For that we shall consider an additive STPAR with three regimes:

Yi = ¢1'Wt + ¢éWt F (7 (s, —c))+ ¢3'Wt F,(7.(h —¢,)) + &, (23)
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¢; =0, + Zh:/iik sin(2kz(D(s)/D)) + «;, cos(2kz (D(s)/D))

g, ~iid(0,5?).

where i = 1, 2, 3 and F; is the same logistic function as F; and h; is another
transition variable or the same with a different lag. What we need to consider is
that the model has been estimated without the third regime which is the second

nonlinear component, and the null hypothesis Ho: 7, =0 is tested against (23).

For that, assuming the same as before, that is, under this null hypothesis the

parameters ¢, 4,.,7, and c, can be consistently estimated by NLS.

Following the same idea as the test showed previously, we need to replace
F, in (23) by its third order Taylor series approximation around y, =0 because
under this null hypothesis the model is not identified. This equals T, = fyo + fyh +
fooh? + + fosh, where £y, j = 0,1,2,3, are functions of 7, such that fx = foy = f, =

fo3 =0 for y, = 0. The result of (23) after some reparameterization is

Yi :¢1lwt +¢2Wt Fl(yl(st _Cl))+ﬂéwtht +ﬂ3lwtht2 +184I1Wtht3 + 4 (24)

wherew, =[y,,,... ¥, ,]'- Under Ho which is equivalent now to testing

Ho: B, = s = B, =0, i, = &, under Ho. The dimension of the null hypothesis is
different now, increased from p to 3p. In fact one is testing against an additive
STPAR component. The asymptotic theory behind the test is really similar to that
one presented for the test with no autocorrelation. The test statistic is the same as
(18) with 7, as before, however, ©O, is different. It is now equal to
(w,h,,w.hZ,w;h’) . The test can be performed in the same steps as shown before
in the test of no autocorrelation. The difference is just the new definition of O, at

stage 3 and the degrees of freedom in the F test, 3p and T — n — 3p, respectively.
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3.5
Forecasting

The forecasting is one of the most important issues in the scope of this
work. Forecasting with a periodic auto regression is roughly the same as an AR
model. Therefore, one can actually forecast with the STPAR in the same way as a
STAR.

The non-linearity of the models STPAR make the forecast with more than
one step ahead much more complicated than in the linear models. Considering one
step ahead forecast one could say that it is the same as an auto regressive model.
For a complete discussion about forecasting see Lundbergh and Terasvirta (2000).
The next discussion will be based in a general procedure to obtain forecasts for
more than one step ahead forecast.

Consider the model STPAR in (5). It follows thatE(y,., |Y,) = f (W, ,;¥),

which is the unbiased forecast of y,, made at time t conditional to all previous
observations Y, up until that time. In this case, all the relevant information is
included inw,,; = (LY, Y1, Yopyy)' s the notation of the forecast is then y,', .

To forecast for more than one step ahead is not straightforward because to obtain

E(y,, |Y;) is somehow more difficult. It is then

th+2|t =E(Y... 1Y) = E{[9 (Wtf+2|t W) +e,]1Y. = E{g (Wtf+2|t W)Y, (25)

where W/, = (L Yy + € Yo Yoo Yepopy)'s The exact expression for (14)

would be
Vo = ELGO o 0) Y3 = [ 955w )d(2)dz (26)

where ®(z) is the cumulative distribution function of ¢,,. Numerical integration

would be needed to obtain the forecast, and for longer time horizons multiple

integration is necessary.
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Computationally, it is more feasible to obtain the forecasts recursively
without numerical integration. As pointed out in Granger and Terasvirta (1993)
another way to do it would by simulating. One could use Monte Carlo, relying on
the error distribution, or bootstrap, applying resample to obtain the forecast. An
advantage of these numerical approximations to the true expectations relies on the
fact that instead of having one point forecast, one has a number of point forecasts
for each period to be predicted. Hence, what is available is a density forecast, and
confidence intervals may be constructed on the basis of them. The reader needs to
remember that in doing so one of these procedures, it doesn’t account for
sampling uncertainty and, therefore, the intervals are somewhat narrow.

In this thesis, Monte Carlo simulation was used. For k steps ahead forecast

horizon it follows that
f X f
Yeit = }{\| Z I(Wewis¥) (27)
i=1

where each of the N values of &, in AR

is drawn independently from a
normal error distribution of the estimated model, that is with the same mean and
variance. By the weak law of large numbers, the forecast is asymptotically

unbiased asN — oo .
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